Hermite-Fejér type interpolation and Korovkin's theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite and Hermite-Fejér interpolation for Stieltjes polynomials

Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Sti...

متن کامل

Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights

We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press

متن کامل

Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

The author introduces the concept of harmonically convex functions and establishes some Hermite-Hadamard type inequalities of these classes of functions.

متن کامل

Generalized Hermite Interpolation and Sampling Theorem Involving Derivatives

We derive the generalized Hermite interpolation by using the contour integral and extend the generalized Hermite interpolation to obtain the sampling expansion involving derivatives for band-limited functions f , that is, f is an entire function satisfying the following growth condition |f(z)| ≤ A exp(σ|y|) for some A, σ > 0 and any z = x + iy ∈ C.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1990

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700028549